
Journal of Computational Physics 225 (2007) 300–321

www.elsevier.com/locate/jcp
A second order accurate level set method on
non-graded adaptive cartesian grids

Chohong Min a, Frédéric Gibou b,c,*

a Department of Mathematics, KyungHee University, Korea
b Mechanical Engineering Department, University of California, Santa Barbara, CA 93106, United States

c Computer Science Department, University of California, Santa Barbara, CA 93106, United States

Received 10 May 2006; received in revised form 27 November 2006; accepted 28 November 2006
Available online 23 January 2007
Abstract

We present a level set method on non-graded adaptive Cartesian grids, i.e. grids for which the ratio between adjacent cells
is not constrained. We use quadtree and octree data structures to represent the grid and a simple algorithm to generate a
mesh with the finest resolution at the interface. In particular, we present (1) a locally third order accurate reinitialization
scheme that transforms an arbitrary level set function into a signed distance function, (2) a second order accurate semi-
Lagrangian methods to evolve the linear level set advection equation under an externally generated velocity field, (3) a
second order accurate upwind method to evolve the non-linear level set equation under a normal velocity as well as to
extrapolate scalar quantities across an interface in the normal direction, and (4) a semi-implicit scheme to evolve the inter-
face under mean curvature. Combined, we obtain a level set method on adaptive Cartesian grids with a negligible amount of
mass loss. We propose numerical examples in two and three spatial dimensions to demonstrate the accuracy of the method.
� 2006 Published by Elsevier Inc.

Keywords: Level set method; Ghost fluid method; Adaptive mesh refinement; Non-graded Cartesian grids; Motion by mean curvature;
Motion in the normal direction; Motion in an externally generated velocity field; Extrapolation in the normal direction
1. Introduction

Many problems in science and engineering can be described by a moving free boundary model. Examples
include free surface flows, Stefan problems and multiphase flows to cite a few. The difficulty in solving these
problems stems from the fact that: First, they involve dissimilar length scales. Second, the boundary position
must be computed as part of the solution process. Third, the interface may be expected to undergo complex
topological changes, such as the merging or the pinching of two fronts. Numerically, the interface that sepa-
rates the two phases can be either explicitly tracked or implicitly captured. Several classes of successful meth-
ods exist with their own virtues and drawbacks.
0021-9991/$ - see front matter � 2006 Published by Elsevier Inc.

doi:10.1016/j.jcp.2006.11.034

* Corresponding author. Address: Mechanical Engineering Department, University of California, Santa Barbara, CA 93106, United
States. Tel.: +1 8058937152.

E-mail address: fgibou@engineering.ucsb.edu (F. Gibou).

mailto:fgibou@engineering.ucsb.edu

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 301
Volume of fluid methods [3,4,9,27,44,66] have the advantage of being volume preserving since the mass
fraction in each cell is being tracked. However, it is often difficult to extract geometrical properties such as
curvatures due to the fact that it is challenging or even impossible to reconstruct a smooth enough function
from the mass fractions alone. We note however that some recent improvement in interface reconstruction can
be found in [11].

The main advantage of an explicit approach, e.g. front tracking [25,28,29,62], is its accuracy. The main dis-
advantage is that additional treatments are needed for handling changes in the interface’s topology. In turn,
the explicit treatment of connectivity makes the method challenging to extend to three spatial dimensions.
While researchers have produced remarkable results for a wide variety of applications using front tracking
techniques, these difficulties make this approach not ideally suited for studying interface problems with
changes in topology. Implicit representations such as the level set method or the phase-field method represent
the front as an isocontour of a continuous function. Topological changes are consequently handled in a
straightforward fashion, and thus these methods are readily implemented in both two and three spatial
dimensions.

The main idea behind the phase-field method is to distinguish between phases with an order parameter (or
phase-field) that is constant within each phase but varies smoothly across an interfacial region of finite thick-
ness. The dynamics of the phase-field is then coupled to that of the solution in such a way that it tracks the
interface motion and approximates the sharp interface limit when the order parameter vanishes. Phase-field
methods are very popular techniques for simulating dendritic growth for example and have produced accurate
quantitative results, e.g. [33,32,30,41,54]. However, these methods suffer from their own limitations: phase-
field methods have only an approximate representation of the front location and thus the discretization of
the diffusion field is less accurate near the front, resembling an enthalpy method [7]. Another consequence
is the stringent time step restriction imposed by such methods. Karma and Rappel [31] have developed a
thin-interface limit of the phase-field model with a significant improvement of the capillary length to interface
thickness ratio constraint; however, the time step restriction is still on the order of the microscopic capillary
length. Another disadvantage is the potential difficulty in relating the phase-field parameters to the physical
parameters [64], although some progress is being made for some wider class of problems [12].

The main difference between the phase-field method and the level set approach [48,55,46] is that the level set
method is a sharp interface model. The level set can therefore be used to exactly locate the interface in order to
apply discretizations that depend on the exact interface location. Consequently, the sharp interface equation
can be solved directly with no need for asymptotic analysis, which makes the method potentially more attrac-
tive in developing general tool box software for a wide range of applications. Another advantage is that only
the standard time step restrictions for stability and consistency are required, making the method significantly
more efficient. Level set methods have been extremely successful on uniform grids in the study of physical
problems such as compressible flows, incompressible flows, multiphase flows (see e.g. [46,55] and the refer-
ences therein), Epitaxial growth (see e.g. [5,23,24,50] and the references therein) or in image processing (see
e.g. [47] and the references therein). One of the main problem of the level set method, namely its mass loss,
has been partially solved with the advent of the particle level set method of Enright et al. [13]. Within this
method, the interface is captured by the level set method and massless particles are added in order to reduce
the mass loss. The massless particles are also used in the reinitialization process for obtaining smoother results
for the reinitialized level set function. However, the use of particles adds to the CPU and the memory require-
ment and cannot be applied for flows producing shocks. Rather recently, there has been a thrust in developing
level set methods on adaptive Cartesian grids. For example Losasso et al. [36] presented a particle level set
based method to simulate free surface flows on non-graded Cartesian grids. Within this method, the interface
between the liquid and the air is captured by the particle level set on a non-graded octree data structure. Other
interesting work on adaptive level-set methods can be found in [10,37].

In this paper, we present a general particle-less level set method on non-graded Cartesian grids that pro-
duces a negligible amount of mass loss. We apply this method to the level set evolution (1) with an exter-
nally generated velocity field, (2) in the normal direction and (3) under mean curvature. We also present a
locally third order accurate reinitialization scheme that transforms an arbitrary function into a sign distance
function as well as standard techniques to extrapolate a scalar quantities across an interface in its normal
direction.

302 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
2. The level set method

The level set method, introduced by Osher and Sethian [48] describes a curve in two spatial dimensions or a
surface in three spatial dimensions by the zero-contour of a higher dimensional function /, called the level set
function. For example, in two spatial dimension, a curve is define by fðx; yÞ : /ðx; yÞ ¼ 0g. Under a velocity
field V, the interface deforms according to the level set equation
Fig. 1.
root o
the diff
/t þ V � r/ ¼ 0: ð1Þ

To keep the values of / close to those of a signed distance function, i.e. jr/ j ¼ 1, the reinitialization equation
introduced in Sussman et al. [61]
/s þ Sð/oÞðjr/j � 1Þ ¼ 0 ð2Þ

is traditionally iterated for a few steps in fictitious time, s. Here Sð/oÞ is a smoothed out sign function. The
level set function is used to compute the normal
~n ¼ r/=jr/j;

and the mean curvature
j ¼ r �~n:

We refer the interested readers to the book by Osher and Fedkiw [46] as well to the book by Sethian [55] for
more details on the level set method.

3. Spatial discretization and refinement criterion

We use a standard quadtree (resp. octree) data structure to represent the spatial discretization of the phys-
ical domain in two (resp. three) spatial dimensions as depicted in Fig. 1: Initially the root of the tree is asso-
ciated with the entire domain, then we recursively split each cell into four children until the desired level of
detail is achieved. This is done similarly in three spatial dimensions, except that cells are split into eight cubes
(children). We refer the reader to the books of Samet [52,53] for more details on quadtree/octree data
structures.

By definition, the difference of level between a parent cell and its direct descendant is one. The level is then
incremented by one for each new generation of children. A tree in which the difference of level between adja-
cent cells is at most one is called a graded tree. Meshes associated with graded trees are often used in the case
of finite element methods in order to produce procedures that are easier to implement. Graded Cartesian grids
are also used in the case of finite difference schemes, see for example the work of Popinet [49] for the study of
incompressible flows. Graded meshes impose that extra grid cells must be added in regions where they are not
Discretization of a two dimensional domain (left) and its quadtree representation (right). The entire domain corresponds to the
f the tree (level 0). Then each cell can be recursively subdivided further into four children. In this example, the tree is ungraded since
erence of level between cells exceeds one.

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 303
necessarily needed, consuming some computational resources that cannot be spent elsewhere, eventually lim-
iting the highest level of detail that can be achieved. Moore [40] demonstrates that the cost of transforming an
arbitrary quadtree into a graded quadtree could involve eight times as many grid nodes. Weiser [63] proposed
a rough estimate for the three dimensional case and concluded that as much as 71 times as many grid nodes
could be needed for balancing octrees. These estimates clearly represent the worse case scenarios that seldom
exist in practical simulations. However, there is still a non-negligible difference between graded and non-
graded grids. In addition, not imposing any constraint on the difference of level between two adjacent cells
allows for easier/faster adaptive mesh generations.

In this work we choose to impose that the finest cells lie on the interface, since it is the region of interest for
the level set method. In order to generate adaptive Cartesian grids, one can use the signed distance function to
the interface along with the Whitney decomposition, as first proposed by Strain in [58]. Simply stated, one
‘‘splits any cell whose edge length exceeds its distance to the interface’’. For a general function / : Rn ! R with
Lipschitz constant Lipð/Þ, the Whitney decomposition was extended in Min [39]: Starting from a root cell split
any cell C if
min
v2verticesðCÞ

j/ðvÞj 6 Lipð/Þ � diag-sizeðCÞ;
where diag-size(C) refers to the length of the diagonal of the current cell C and v refers to a vertex (node) of the
current cell.

4. Finite difference discretizations

In the case of non-regular Cartesian grids, the main difficulty comes from deriving discretizations at T-junction
nodes, i.e. nodes for which there is a missing neighboring node in one of the Cartesian directions. For example
Fig. 2 depicts a T-junction node v0, with three neighboring nodes v1, v2 and v3 aligned in the Cartesian direc-
tions and one ghost neighboring node v4 replacing the missing grid node in the positive Cartesian direction.
The value of a node-sampled function / : fvig ! R at the ghost node v4 could for example be define by linear
interpolation:
/G
4 ¼

/5s6 þ /6s5

s5 þ s6

: ð3Þ
However, instead of using this second order accurate interpolation, one can instead use the following third
order accurate interpolation: First, note that a simple Taylor expansion demonstrates that the interpolation
error in Eq. (3) is given by:
/G
4 ¼

/5s6 þ /6s5

s5 þ s6

¼ /ðv4Þ þ
s5s6

2
/yyðv0Þ þOðMxsmallestÞ3; ð4Þ
where Mxsmallest is the size of the smallest grid cell with vertex v0. The term /yyðv0Þ can be approximated using

the standard first order accurate discretization 2
s2þs3

/2�/0

s2
þ /3�/0

s3

� �
and cancelled out in Eq. (4) to give:
Fig. 2. Neighboring nodes of a T-junction node, v0.

304 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
/G
4 ¼

/5s6 þ /6s5

s5 þ s6

� s5s6

s2 þ s3

/2 � /0

s2

þ /3 � /0

s3

� �
: ð5Þ
We also point out that this interpolation only uses the node values of the cells adjacent to v0, which is partic-
ularly beneficial since access to cells not immediately adjacent to the current cell is more difficult and could add
on CPU time and/or memory requirement.

In three spatial dimensions, similar interpolation procedures can be used to define the value of / at ghost
nodes. Referring to Fig. 3, a T-junction node v0 has four regular neighboring nodes and two ghost nodes. The
values of a node-sampled function / : fvig ! R at the ghost nodes v4 and v5 can be defined by second order
linear and bilinear interpolations as:
/G
4 ¼

s7/8 þ s8/7

s7 þ s8

;

/G
5 ¼

s11s12/11 þ s11s9/12 þ s10s12/9 þ s10s9/10

ðs10 þ s11Þðs9 þ s12Þ
:

ð6Þ
As in the case of quadtrees, third order accurate interpolations can be derived by cancelling out the second
order derivatives in the error term to arrive at:
/G
4 ¼

s7/8 þ s8/7

s7 þ s8

� s7s8

s3 þ s6

/3 � /0

s3

þ /6 � /0

s6

� �
;

/G
5 ¼

s11s12/11 þ s11s9/12 þ s10s12/9 þ s10s9/10

ðs10 þ s11Þðs9 þ s12Þ
� s10s11

s3 þ s6

/3 � /0

s3

þ /6 � /0

s6

� �

� s9s12

s1 þ s4

/1 � /0

s1

þ /G
4 � /0

s4

� �
:

ð7Þ
We emphasize that Fig. 3 represents the general configuration of neighboring nodes in the case of an octree as
described in Min et al. [38].

The third order interpolations defined above allow us to treat T-junction nodes in a same fashion as a regular
node, up to third order accuracy. Here, we refer to a regular node as a node for which all the neighboring nodes
in the Cartesian directions exist. Therefore, we can then define finite differences for /x, /y, /z, /xx, /yy and /zz at
Fig. 3. Neighboring vertices of a vertex three spatial dimensions.

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 305
every nodes using standard finite difference formulas in a dimension by dimension framework. For example,
referring to Fig. 4, we use the standard discretization for /x and /xx, namely the central difference formulas:
D0
x/0 ¼

/2 � /0

s2

� s1

s1 þ s2

þ /0 � /1

s1

� s2

s1 þ s2

;

D0
xx/0 ¼

/2 � /0

s2

� 2

s1 þ s2

� /0 � /1

s1

� 2

s1 þ s2

;

ð8Þ
the forward and backward first order accurate approximations of the first order derivatives:
Dþx /0 ¼
/2 � /0

s2

;

D�x /0 ¼
/0 � /1

s1

;

ð9Þ
and the second order accurate approximations of the first order derivatives:
Dþx /0 ¼
/2 � /0

s2

� s2

2
minmodðD0

xx/0;D
0
xx/2Þ;

D�x /0 ¼
/0 � /1

s1

þ s1

2
minmodðD0

xx/0;D
0
xx/1Þ;

ð10Þ
where we use the minmod slope limiter [56,34] because it produces more stable results in region where / might
present kinks. Similarly, approximations for first and second order derivatives are obtained in the y and z

directions.

5. Interpolation procedures

Some reserve must be provided to define data anywhere in a cell, for example in order to use semi-Lagrangian
methods (see Section 7). As pointed out in Strain [59], the most natural choice of interpolation in quadtree
(resp. octree) data structures is the piecewise bilinear (resp. trilinear) interpolation: Consider a cell C with
dimensions ½0; 1�2, the bilinear interpolation at a point x 2 C using the values at the nodes reads:
/ðx; yÞ ¼ /ð0; 0Þð1� xÞð1� yÞ þ /ð0; 1Þð1� xÞðyÞ þ /ð1; 0ÞðxÞð1� yÞ þ /ð1; 1ÞðxÞðyÞ: ð11Þ

Quadratic interpolation can also easily be constructed using the data from the parent cell: Since the parent cell
of any current cell of a quadtree (resp. octree) owns 2� 2 children cells (resp. 2� 2� 2) and 3� 3 nodes (resp.
3� 3� 3), one can defined the multidimensional Lagrange quadratic interpolation on the parent cell. For
example in the case of a cell ½�1; 1�2 in a quadtree, we can define the Lagrange interpolation as:
/ðx; yÞ ¼ /ð�1;�1Þ xðx� 1Þ
2

yðy � 1Þ
2

þ /ð0;�1Þðx2 � 1Þ yðy � 1Þ
2

þ /ð1;�1Þ xðxþ 1Þ
2

yðy � 1Þ
2

þ /ð�1; 0Þ xðx� 1Þ
2

ðy2 � 1Þ þ /ð0; 0Þðx2 � 1Þðy2 � 1Þ þ /ð1; 0Þ xðxþ 1Þ
2

ðy2 � 1Þ

þ /ð�1; 1Þ xðx� 1Þ
2

yðy þ 1Þ
2

þ /ð0; 1Þðx2 � 1Þ yðy þ 1Þ
2

þ /ð1; 1Þ xðxþ 1Þ
2

yðy þ 1Þ
2

:

However, this interpolation procedure is sensitive to nearby discontinuities, e.g. near kinks. We therefore pre-
fer to define a quadratic interpolation by correcting Eq. (11) using second order derivatives. For a cell ½0; 1�2,
we have:
/ðx; yÞ ¼ /ð0; 0Þð1� xÞð1� yÞ þ /ð0; 1Þð1� xÞðyÞ þ /ð1; 0ÞðxÞð1� yÞ þ /ð1; 1ÞðxÞðyÞ

� /xx
xð1� xÞ

2
� /yy

yð1� yÞ
2

; ð12Þ
Fig. 4. One dimensional adaptive grid.

306 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
where we define
/xx ¼ min
v2verticesðCÞ

ðjD0
xx/vjÞ;

/yy ¼ min
v2verticesðCÞ

ðjD0
yy/vjÞ:

ð13Þ
Since a distant function is piecewise differentiable in general, the choice of the smallest in absolute value en-
hances the numerical stability of the interpolation.
6. Reinitialization scheme

In principle, the level function can be chosen as any Lipschitz continuous function. However, the so-called
signed distance function is known to produce more robust numerical results, to improve mass conservation
and to reduce errors in the computations of geometrical quantities such as the interface curvatures. Sussman
et al. proposed in [60] to evolve the following partial differential equation to steady state in order to reinitialize
a level set function /0 : Rn ! R into the signed distance function /:
/s þ sgnð/0Þðjr/j � 1Þ ¼ 0; ð14Þ
where s represents the fictitious time. A standard discretization for this equation in its semi-discrete form is
given by:
d/
ds
þ sgnð/0Þ½HGðDþx /;D�x /;Dþy /;D�y /Þ � 1� ¼ 0; ð15Þ
where sgnð/0Þ denotes the signum of /0 and HG is the Godunov Hamiltonian defined as:
HGða; b; c; dÞ ¼

ffi
maxðjaþj2; jb�j2Þ þmaxðjcþj2; jd�j2Þ

q
if sgnð/0Þ 6 0ffi

maxðja�j2; jbþj2Þ þmaxðjc�j2; jdþj2Þ
q

if sgnð/0Þ > 0

8><
>:
with aþ ¼ maxða; 0Þ and a� ¼ minða; 0Þ. The one-sided derivatives, D�x / and D�y / are discretized by the sec-
ond order accurate one-sided finite differences defined in Section 4. Eq. (15) is evolved in time with the TVD
RK-2 method given in Shu and Osher [56]: First define ~/nþ1 and ~/nþ2 by Euler steps
~/nþ1 � /n

Ms
þ sgnð/0Þ½HGðDþx /n;D�x /n;Dþy /n;D�y /nÞ � 1� ¼ 0;

~/nþ2 � ~/nþ1

Ms
þ sgnð/0Þ½H GðDþx ~/nþ1;D�x ~/nþ1;Dþy ~/nþ1;D�y ~/nþ1Þ � 1� ¼ 0;
and then define /nþ1 by averaging:
/nþ1 ¼ /n þ ~/nþ2

2
:

In order to preserve area/volume, the reinitialization procedure is required not to move the original inter-
face defined by /0. In their seminal work, Russo and Smereka [51] solved this problem by simply including the
initial interface location (given by /0) in the stencils of the one-sided derivatives. Consider the case depicted by
Fig. 4 and suppose that /0

0 � /
0
2 < 0, i.e. the interface is located between the nodes v0 and v2. The interface loca-

tion vI can be calculated by finding the root of the quadratic interpolation of /0 on the interval v0v2 with the
origin at the center of the interval:
/0ðxÞ ¼ c2x2 þ c1xþ c2; with

c2 ¼ 1
2
minmod½D0

xx/
0
0;D

0
xx/

0
2�

c1 ¼ ð/0
2 � /0

0Þ=s2

c0 ¼ ð/0
2 þ /0

0Þ=2� c2s2
2=4

8><
>: :

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 307
The distance sI between v0 and the interface location is then defined by
sI ¼
s2

2
þ

�c0=c1 if jc2j < �

ð�c1 þ
ffi
c2

1 � 4c2c0

p
Þ=ð2c2Þ if jc2jP � and /0

0 < 0

ð�c1 �
ffi
c2

1 � 4c2c0

p
Þ=ð2c2Þ if jc2jP � and /0

0 > 0

8><
>: :
The calculation of Dþx /n
0 is then modified using the interface location and the fact that / ¼ 0 at the interface:
Dþx /n
0 ¼

0� /n
0

sI

� sI

2
minmodðD0

xx/
n
0;D

0
xx/

n
2Þ:
We note that in the original work of Russo and Smereka [51], a cubic interpolation was employed to locate the
interface, but that the above quadratic interpolation with the minmod operator acting on the second order
derivatives proved to be more stable in the case where the level set function presents a kink nearby. We also
point out that in the original work of [51], the first order derivative Dþx /n

0 was discretized as:
Dþx /n
0 ¼

0� /n
0

sI

� sI

2
minmodðD0

xx/
n
0;D

0
xx/

n
I Þ;
thus included vI in the discretization of D0
xx/

n
I . However, we found that this choice leads to unstable results when

the interface is close to grid nodes. We thus slightly changed the discretization by only using the location of the
interface in the first term in order to maintain the location of /0, not in the discretization of second order deriv-
atives. Likewise, in the case where sI is close to zero (hence /0

0 is close to zero) we simply set /n
0 ¼ 0 to guarantee

stability. This only introduces a negligible perturbation in the location of the zero level set.
The same process is then applied to D�x / if there is a sign change between /0

0 and /0
1. The time step restric-

tion for cells cut by the interface is then:
Ds ¼
minðsI; s1; s2Þ in 1D;

minðsI; s1; s2; s3; s4Þ=2 in 2D;

minðsI; s1; s2; s3; s4; s5; s6Þ=3 in 3D:

8><
>: ð16Þ
6.1. Adaptive time stepping

We note that an adaptive time step is possible since only the steady state of (14) is sought. Since the time
step restriction is adapted for each cell, the reinitialization procedure is fast: small cells with a stringent time
step restriction are located near the interface and therefore only a few iterations are required to reach
the steady state at those cells (characteristic information flow away from the interface); cells far away from
the interface are large and therefore do not require a small time step restriction. For example, consider the
example depicted in Fig. 5, for which the level set function is defined initially as �1 inside a square domain
(not aligned with the grid cells) and +1 outside. This initial level set function is therefore very far from the
signed distance function that we seek to define. However, on a grid where the smallest grid has size
dx ¼ 1=2048, the reinitialization procedure takes only 35 iterations to fully converge to the signed distance
function in the entire domain. In practice, the initial level set is never that far to the signed distance function
and therefore only about five iterations are required regardless of the resolution of the finest level. Fig. 6
illustrates the difference in the number of iterations required between uniform time stepping and adaptive
time stepping. In the case of a uniform time step, we take Mt ¼ Mxsmallest=2, with Mxsmallest the size of the
smallest cell.

6.2. Third order accuracy

We also computed the convergence rates of the reinitialization algorithm for the test problem proposed in
[51]: Consider the level set function initially defined as:
/0ðx; yÞ ¼ ð0:1þ ðx� 1Þ2 þ ðy � 1Þ2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 1Þ;

Fig. 6. L1 errors of the reinitialization algorithm in the case of the adaptive time step (solid line) and the uniform time step (dotted line).

Fig. 5. Reinitialization procedure. Left: initial level set function (top) and its zero cross-section (bottom) defining a square domain. Right:
reinitialized level set function (top) and its zero cross-section (bottom). In particular, the difference in the zero level set between the initial
and final stages is negligible. In this example, the level difference between adjacent cells is not restricted.

308 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
which defines the interface as a circle with center the origin and radius 1. In this case, /0 is not a signed dis-
tance function and its gradients vary widely. Fig. 7 illustrates the gradual deformation of the cross-sections of
/0 as it evolves to the signed distance function. Table 1 illustrates that the method is third order accurate in the
L1 and L1 norms near the interface, where we use the standard formulas for the L1 and L1 norms:
k/k1 ¼ max
v:j/ðvÞj<1:2Dx

j/ðvÞ � /exactðvÞj;

k/k1 ¼ average
v:j/ðvÞj<1:2Dx

j/ðvÞ � /exactðvÞj;
where Dx ¼ Dxsmallest. Note that after the reinitializing the level set function, the choice of v : j/ðvÞj < 1:2Dx
ensures the selection of all the nodes adjacent to the interface.

In the entire domain, the method is second order accurate if we keep refining all the cells. In the practical
case where only cells near the interface are refined, the accuracy in regions far away from the interface is mean-
ingless. In the case where the interface presents sharp corners, the accuracy is reduced to first order in the L1

norm.

Fig. 7. From top-left to bottom-right: Contours of the reinitialized level set function of example 6.2 after 0, 5, 10 and 20 iterations. The
contours are evenly plotted from �1 to 1 with a thick line representing the zero contour.

Table 1
Convergence rates for the reinitialization for example 6.2

Finest resolution

1282 Rate 2562 Rate 5122

Uniform refinement Near interface L1 4:36� 10�6 2.92 5:77� 10�7 3.02 7:12� 10�8

L1 2:16� 10�5 2.74 3:24� 10�6 3.26 3:38� 10�7

Whole domain L1 3:27� 10�4 2.14 7:42� 10�5 2.11 1:71� 10�5

L1 4:20� 10�2 1.56 1:43� 10�2 1.87 3:89� 10�3

Adaptive refinement Near interface L1 4:36� 10�6 2.94 5:70� 10�7 3.00 7:14� 10�8

L1 2:16� 10�5 2.87 2:96� 10�6 3.09 3:48� 10�7

Whole domain L1 3:27� 10�4 1.06 1:57� 10�4 1.01 7:82� 10�5

L1 4:20� 10�2 0.00 4:20� 10�2 0.00 4:20� 10�3

The initial grid is shown in Fig. 7. The condition for a node vi to be ‘near interface’ is chosen as j/ðviÞ j<
ffiffiffi
2
p
Mxsmallest, where Mxsmallest is the

size of the smallest cell. The ‘whole domain’ excludes the region near the kink located at the origin, where accuracy drops to first order.

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 309
7. Motion under an externally generated velocity field

7.1. Second order accurate semi-Lagrangian method

In the case where the velocity field is externally generated, the level set Eq. (1) is linear. In this case, one can
use semi-Lagrangian methods. Semi-Lagrangian schemes are extensions of the Courant–Isaacson–Rees [8]
method for hyperbolic equations and are unconditionally stable thus avoiding standard CFL condition of
Dt � Dxsmallest. The general idea behind semi-Lagrangian methods is to reconstruct the solution by integrating

310 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
numerically the equation along characteristic curves, starting from any grid point xi and tracing back the
departure point xd in the upwind direction. Interpolation formulas are then used to recover the value of
the solution at such points. In this work, we use a second order accurate semi-Lagrangian method.

Consider the linear advection equation:
Table
Conve

Finest

322

642

1282

2562

5122

10242

20482
/t þ U � r/ ¼ 0; ð17Þ

where U is an externally generated velocity field. Then /nþ1ðxnþ1Þ ¼ /nðxdÞ, where xnþ1 is any grid node and xd

is the corresponding departure point from which the characteristic curve originates. In this work, we use the
second order mid-point method for locating the departure point, as in [65]:
x̂ ¼ xnþ1 � Dt
2
� U nðxnþ1Þ;

xd ¼ xnþ1 � Dt � U nþ1
2ðx̂Þ;
where we define the velocity at the mid-time step tnþ1
2 by a linear combination of the velocities at the two

previous time steps, i.e. Unþ1
2 ¼ 3

2
U n � 1

2
U n�1. Since x̂ and xd are not on grid nodes in general, interpolation

procedures must be applied to define U nþ1
2ðx̂Þ and /nðxdÞ. We note that it is enough to define U nþ1

2ðx̂Þ with a
multilinear interpolation (11) and /nðxdÞ with the quadratic interpolation described by Eqs. (12) and (13):
Since a distance function has discontinuities in its derivative in general, the stabilized quadratic interpolation
is preferred to the Hermite quadratic interpolation.

7.2. Test: rotation in 2D

Consider a domain X ¼ ½�1; 1�2 and a disk of radius R ¼ :15 and center initially at ð0; :75Þ, rotating under
the divergence free velocity field
uðx; yÞ ¼ �y

vðx; yÞ ¼ x
The final time t ¼ 2p is the time when the rotation completes one revolution. In the simulation, the adaptive
refinement is used, and the time step restriction is Dt ¼ 5Dx. Table 2 demonstrates second order accuracy for
the level set as well as for the mass conservation. We note that we only consider the grid nodes neighboring the
interface in our computation of the accuracy for the level set function / since only those points define the loca-
tion of the interface.

7.3. Test: vortex in 2D

In this example, we test our level set implementation on the more challenging flow proposed by Bell et al.
[2]: Consider a domain X ¼ ½0; 1�2 and a disk of radius .15 and center ð:5; :75Þ as the initial zero level set con-
tour. The level set is then deformed under the divergence free velocity field U ¼ ðu; vÞ given by:
uðx; yÞ ¼ � sin2ðpxÞ sinð2pyÞ
vðx; yÞ ¼ sin2ðpyÞ sinð2pxÞ
2
rgence rates for example 7.2

resolution L1 error of / Rate L1 error of / Rate Loss of volume (%) Rate

7:24� 10�2 3:11� 10�2 28.51
1:78� 10�2 2.02 8:86� 10�3 1.81 7.21 1.98
4:52� 10�3 1.97 2:13� 10�4 2.05 1.78 2.01
1:13� 10�3 1.99 5:56� 10�4 1.93 0.45 1.98
2:85� 10�4 2.00 1:38� 10�4 2.01 0.11 2.03
7:14� 10�5 2.00 3:46� 10�5 2.00 0.03 1.87
1:78� 10�5 2.00 8:64� 10�6 2.00 0.007 2.01

Table 3
Convergence rates for example 7.3

Finest resolution

642 Rate 1282 Rate 2562 Rate 5122

L1 error of / 9:58� 10�3 2.80 1:38� 10�3 2.02 3:41� 10�4 2.08 8:09� 10�5

L1 error of / 1:83� 10�2 1.57 6:17� 10�3 1.08 2:91� 10�3 1.39 1:11� 10�3

Volume loss 4.48 2.36 0.874 1.40 0.331 1.79 0.0954
Max number of nodes 1045 1.10 2243 1.10 4815 1.09 10256
Min number of nodes 439 1.07 924 0.99 1831 1.01 3679
Time (s) 1.420 2.29 6.96 2.17 31.4 2.13 138
Minimum memory (MB) 0.0448 1.07 0.0943 .97 0.185 1.00 0.371
Maximum memory (MB) 0.101 1.30 0.248 1.06 0.517 1.03 1.06

The memory requirement increases linearly with effective resolution since most of the computational resources is focused near the one-
dimensional interface, i.e. our method is an efficient implementation of local level set methods. The computational time increases
quadratically with effective resolution, since the number of nodes is doubled and the time step is halved.

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 311
The disk is deformed forward until t ¼ 1 and then backward to the original shape using the reverse velocity
field with a time step restriction of Mt ¼ 5 � Mxsmallest.

Table 3 demonstrate second order accuracy for L1 error of / and volume of loss, and linear increase in the
maximum/minimum number of nodes. Note that the uniform grid of resolution 5122 requires about 25 times
more nodes than the adaptive grid with the same resolution. Although second order accuracy was achieved in
both the maximum and average norms in the previous example, the convergence rate of the maximum error is
oscillating between one and two. This is due to the fact that as the interface deforms, some part of the interface
are under resolved. Fig. 8 illustrates this at t ¼ 1: Here, the tail of the interface is not resolved accurately. This
deterioration in accuracy was also reported in [45].

Fig. 9 illustrates the evolution of the interface location initially (left), at t ¼ 6 (center) and when the inter-
face is fully rewinded (right). This example illustrates the ability of the present method to accurately capture
the evolution of an interface undergoing large deformations and the ability to preserve mass effectively (mass
loss � :3%).

7.4. Test: rotation in 3D

Consider a domain X ¼ ½�2; 2�3 and a sphere of radius R ¼ :5 and center initially at ð0; 1; 0Þ, rotating under
the divergence free velocity field
Fig. 8. Contours of the zero level sets for example 7.3 with effective resolutions of 642, 1282, 2562 and 5122 at t ¼ 1 (left) and t ¼ 2 (right).
The colors red, green, blue represent the difference in the interface location between the resolutions 642 and 1282, 1282 and 2562, 2562 and
5122, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Level set evolution at t ¼ 0 (left), t ¼ 3 (center) and t ¼ 6 (right). The effective resolution is 20482 and the mass is conserved within
.3%.

Table
Conve

L1 erro
L1 err
Volum

312 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
uðx; y; zÞ ¼ �y

vðx; y; zÞ ¼ x

wðx; y; zÞ ¼ 0
The simulation is run until t ¼ 2p, when the rotation completes one revolution. In the simulation, the adaptive
refinement is used, and the time step restriction is Dt ¼ 6Dxsmallest. Table 4 demonstrates second order accuracy
for the level set as well as for the mass conservation. We note that we only consider the grid nodes neighboring
the interface in our computation of the accuracy for the level set function /. Fig. 10 shows the adaptive grid
for the rotating sphere.

7.5. Enright’s test in 3D

We consider the test proposed in Enright et al. [13]: A sphere of center ð0:35; 0:35; 0:35Þ and radius 0.15 in
the domain of ½0; 1�3 is deformed under the following divergence free velocity field:
uðx; y; zÞ ¼ 2 sin2ðpxÞ sinð2pyÞ sinð2pzÞ
vðx; y; zÞ ¼ � sin2ðpyÞ sinð2pxÞ sinð2pzÞ
wðx; y; zÞ ¼ � sin2ðpzÞ sinð2pxÞ sinð2pyÞ
forward in time and then backward to its original shape with the reversed velocity. Fig. 11 illustrates the inter-
face motion with a time step restriction of Mt ¼ 5 � Mxsmallest. We note that, in the simulation with an effective
resolution of 5123, minimum the number of nodes used was 685,220 and the maximum was 2,606,710. In con-
trast, the number of nodes in the case of a uniform grid with the same resolution, the number of nodes would
be about 50 times larger. The volume loss is 3.21% for an effective resolution of 2563 and 0.739% for an effec-
tive resolution of 5123. Fig. 12 compares the interface evolution with an effective resolution of 1283, 2563 and
5123. Table 5 describes the memory and CPU requirements, and Table 6 describes the volume loss and the
accuracy of the interface location after reconverting the original shape.

The Enright’s test is a canonical example to test the amount of numerical dissipation of level set methods.
The particle level set method reported 2.6% volume loss on a 1003 uniform grid together with Lagrangian
4
rgence rates for the interface’s location for example 7.4

Finest resolution

323 Rate 643 Rate 1283 Rate 2563

r of / 6:86� 10�2 1.88 1:87� 10�2 1.99 4:70� 10�3 1.99 1:18� 10�3

or of / 1:76� 10�1 2.02 4:35� 10�2 2.02 1:07� 10�2 2.02 2:65� 10�3

e loss (%) 23.1 2.16 5.14 2.12 1.18 2.07 0.282

Fig. 10. Evolution of the interface for example 7.4: Initial data (top-left), interface after a quarter turn (top-right), interface after a half
turn (bottom-left) and final location (bottom-right). The finest resolution is 1283.

Fig. 11. Evolution of the interface for the Enright’s test with finest resolution of 5123.

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 313
particles [13]. Our results show that we obtain a loss of mass of .74% in the case of a 5123 effective resolution,
which corresponds to a 1373 uniform grid in term of number of nodes. The particle level set was further
improved in [14] using octree data structures in addition to particles. Although [14] does not report any

Fig. 12. Effect of refinement on the Enright’s test: The top figures correspond to the interface fully stretched and the bottom figures
correspond to the interface rewinded to the original sphere. The finest resolutions are 1283 (left), 2563 (center) and 5123 (right).

Table 5
Memory and CPU requirements for example 7.5

Finest resolution Time Rate Min # nodes Rate Max # nodes Rate Min memory Rate Max memory Rate

1283 237.5 44,943 133,308 4.54 13.7
2563 2214 3.23 173,637 1.95 598,264 2.17 17.6 1.96 61.5 2.17
5123 19,521 3.14 685,220 1.98 2,606,710 2.12 69.6 1.98 268 2.12

The memory requirement increases quadratically with effective resolution since most of the computational resources is focused near the
two-dimensional interface, i.e. our method is an efficient implementation of local level set methods. The computational time increases
cubically with effective resolution, since the number of nodes is multiplied by four and the time step is halved.

Table 6
Convergence rates for the interface’s location for example 7.5

Finest resolution Volume loss (%) Rate L1 error of / Rate L1 error of / Rate

1283 16.02 1:96� 10�2 1:54� 10�1

2563 3.21 2.32 2:83� 10�3 2.79 1:06� 10�1 .88
5123 .739 2.12 4:38� 10�4 2.69 5:74� 10�3 7.52

314 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
quantitative results, we find that our result for the Enright’s test is visually comparable to that obtained in [14]
for the same effective resolution and compares favorably with the results in [26].

We note that the jump in rate in Table 6 can be explained by the lack of resolution for describing the devel-
oping thin film. This is related to the Nyquist–Shannon sampling theorem that states that in order to fully
reconstruct a signal the sampling frequency should be at least twice the signal bandwidth. In our case, the fact
that the thin film is under-resolved prevents subcell resolution of the reinitialization scheme. For higher res-
olutions, we would expect second-order accuracy.

8. Motion in the normal direction and curvature driven flow

The equation describing an interface propagating in its normal direction and under its mean curvature is
given by [48]:
/t þ ða� bjÞjr/j ¼ 0; ð18Þ

where j is the mean curvature of the interface j ¼ r � ðr/= jr/ jÞ. The coefficients a and b P 0 control the
magnitude of the speed in the normal direction and the strength of the curvature dependence, respectively. The
case where b < 0 is ill-posed and therefore we do not consider it here.

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 315
8.1. Motion in the normal direction

First, we discuss the case when b ¼ 0. Using the second order one-sided derivatives described in Section 4
and discretizing the Hamiltonian using a Godunov scheme, we semi-discretize the equation as:
Table
Conve

L1 erro
L1 err

Consid
evolve
d/
dt
þ a � H Gð/Þ ¼ 0;
where the Godunov Hamiltonian HG is defined as:
H Gð/Þ ¼

ffi
maxðjðDþx /Þ�j2; jðD�x /Þþj2Þ þmaxðjðDþy /Þ�j2; jðD�y /Þþj2Þ

q
if a > 0ffi

maxðjðDþx /Þþj2; jðD�x /Þ�j2Þ þmaxðjðDþy /Þþj2; jðD�y /Þ�j2Þ
q

otherwise:

8><
>:
This equation is discretized in time using the second order TVD Runge–Kutta method (see [56,34]):
~/nþ1 � /n

Mt
þ a � HGð/nÞ ¼ 0 ð19Þ

~/nþ2 � ~/n

Mt
þ a � HGð~/nþ1Þ ¼ 0 ð20Þ

/nþ1 ¼ /n þ ~/nþ2

2
ð21Þ
Table 7 illustrates that the method described above is second order accurate in both the maximum and the
average norms for smooth data. In the case where the interface presents sharp corners, Fig. 13 illustrates that
the method converges to the correct viscosity solution [48].
7
rgence rate for a circle shrinking with unit normal velocity

Finest resolution

642 Rate 1282 Rate 2562 Rate 5122

r of / 1:46� 10�3 2.02 3:58� 10�4 2.00 8:56� 10�4 1.98 2:26� 10�5

or of / 2:77� 10�3 2.04 6:72� 10�4 1.95 1:73� 10�4 1.99 4:36� 10�5

er a domain of ½�2; 2�2 and an interface initially described by a circle centered at the origin with radius R ¼ 1. The interface is
d until t ¼ 0:5.

Fig. 13. Shrinking square in the first row, and expanding square in the second row.

316 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
8.2. Adding motion by mean curvature

Now we discuss the case when b > 0. The curvature term can be discretized explicitly or implicitly. In the
case where the curvature term is discretized explicitly, the corresponding time step restriction of Dt � Dx2 is
too stringent to be practical since it would be constrained by the size of the smallest grid cell in the grid.
In [57], Smereka proposed an implicit discretization of the curvature term in the case of uniform grids: Using
the following operator splitting:
Table
Conve

L1 erro
L1 err

Initiall
r0 ¼ a

Fig. 14
0.023,
jjr/j ¼ D/� r/
jr/j rðjr/jÞ;
Eq. (18) is discretized as:
/nþ1 � /n

Mt
þ aH Gð/nÞ ¼ bD/nþ1 � b

r/n

jr/nj � rðjr/njÞ:
In this work, we used a backward Euler step to treat the linear term, and a forward Euler step for the non-
linear term. The derivatives D and $ are discretized by the central finite differences described in Section 4. Dis-
cretizing implicitly the Laplacian requires a linear system that we solve using the supra convergent method
presented in Min, Gibou and Ceniceros [38]. As noted in [57], the semi-implicit discretization on the curvature
term allows for a big time step, so that the time step restriction is that of the convection part, i.e.
Dt ¼ Dxsmallest

a �#dimensions
; ð22Þ
where # dimensions is the number of dimensions.
Table 8 demonstrates that the method is first order accurate in the average norm for smooth a interface.

The deterioration in the maximum norm probably comes from the Elliptic part of the solver, which propagates
the errors from the regions where the grid cells are coarse and unrefined to the regions where the grid cells are
refined. Fig. 14 illustrates the motion of an interface under mean curvature for the example presented in [57].

9. Adaptive grid generation

As the interface deforms some provisions must be given to refine the grid near the interface while coarsen-
ing in regions farther away. The grid is constructed in such a way that the smallest grid cells lie on the interface
as described in Section 3. This construction depends on an input function, ~/nþ1 : Rn ! R that is close to the
8
rgence rate for a circle with curvature dependent speed of a ¼ 1:5 and b ¼ 1

Finest resolution

1282 Rate 2562 Rate 5122 Rate 10242

r of / 5:22� 10�3 1.00 2:60� 10�3 0.96 1:33� 10�3 0.95 6:95� 10�4

or of / 5:47� 10�3 0.93 2:86� 10�3 0.86 1:56� 10�3 0.81 8:91� 10�4

y circle is centered at ð0; 0Þ with radius one in a domain of ½�2; 2�2. Test was run until 0.5. The radius rðtÞ of the circle satisfies
� b

r with rð0Þ ¼ 1. rð0:5Þ is approximated as 1.3108122 from the ordinary differential equation within error bound of 10�7.

. Motion with curvature flow for a barbel shape. a ¼ 0; b ¼ 1 in 2563 resolution. From top-left to bottom-right, the times are 0,
0.093, 0.140, 0.304 and 0.323. The CFL condition is Dt ¼ Dxsmallest.

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 317
signed distance function at any point in space. This function can be constructed in two different ways: (1) In
the case where semi-Lagrangian methods are used, a function ~/nþ1 can be defined as ~/nþ1 ¼ /nðxdÞ, where xd is
found by tracing back the characteristic curves and where /nðxdÞ is interpolated from the node values of /n as
described in Section 7. (2) In the case where the velocity field is non-linear, semi-Lagrangian methods cannot
be used. In this case the level set function is first evolved from /n to /nþ1 on the same grid Gn. Then /nþ1 is
reinitialized into a signed distance function using the algorithm described in Section 6. Now at every point in
space, we can define ~/nþ1 : Rn ! R by interpolation of /nþ1. Once the function ~/nþ1 : Rn ! R can be define
anywhere in space, the new grid Gnþ1 is generated by simply splitting a cell if the Lipschitz condition:
min
v2verticesðCÞ

j /ðvÞ j6 Lipð/Þ � diag-sizeðCÞ
is satisfied. In practice, instead of generating Gnþ1 from the root cell, we start from Gn and apply the procedure
detailed in Algorithm 1, i.e. starting the recursion from the root cell of Gnþ1, the cell is recursively split if the
refinement criteria is satisfied, otherwise all of its children are merged.

Algorithm 1. Grid Generation
Input: Gn and ~/nþ1 : Rd ! R
1.
 Gnþ1 ¼ Gn
2.
 C ¼ the root cell of Gnþ1
3.
 if the Lipschitz condition for ~/nþ1 is satisfied at C

4.
 if C is a leaf cell

5.
 split C
6.
 end if
7.
 for each child cell C0 of C
8.
 go to 3 with C ¼ C0
9.
 end for
10.
 else
11.
 merge C

12.
 end if
nþ1
Output: G
10. High order extrapolation in the normal direction

The ghost fluid method, introduced by Fedkiw et al. [17], is a technique for imposing boundary conditions
at the interface in a level set framework and has been successfully applied to a wide range of applications (see
e.g. [16,15,42,43,6,35,18–22] and the references therein). One basic component of this method is the extrapo-
lation of some scalar quantities in the normal direction. In some cases (see e.g. [20]), high order extrapolations
in the normal direction are needed. This can be performed in a series of steps, as proposed in Aslam [1]. For
example, suppose that we seek to extrapolate u quadratically from the region where / 6 0 to the region where
/ > 0. We first compute unn ¼~n � rð~n � ruÞ in the region where / 6 0 and extrapolate (constant extrapola-
tion) this quantity across the interface by solving the following partial differential equation:
ounn

os
þ Hð/; unnÞð~n � runnÞ ¼ 0;
where Hð/; unnÞ is the Heaviside function defined below and s is the fictitious time step. Then we define un in
the region where / > 0 in such a way its normal derivative is unn. This can be accomplished by solving the
following PDE:
oun

os
þ Hð/; unÞð~n � run � unnÞ ¼ 0:

318 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
Finally we can define u in such a way its normal derivative is un by solving:
ou
os
þ Hð/; uÞð~n � ru� unÞ ¼ 0:
Numerically the Heaviside function Hð/; SÞðviÞ associated with a quantity S at the node vi is set to zero if the
nodes involved in the computation of S are all in the region where / < 0. Otherwise, it is set to 1. Therefore we
define the Heaviside functions Hð/; uÞ, Hð/; unÞ and Hð/; unnÞ as follows:
Hð/; uÞðviÞ ¼
0; if /ðviÞ < 0;

1; otherwise;

�

Hð/; unÞðviÞ ¼
0; if Hð/; uÞðvjÞ ¼ 0 for all vj 2 ngbdðviÞ;
1; otherwise;

�

Hð/; unnÞðviÞ ¼
0; if Hð/; unÞðvjÞ ¼ 0 for all vj 2 ngbdðviÞ;
1; otherwise;

�

where ngbdðviÞ denotes the set of direct neighboring nodes of vi. The quantity un ¼~n � ru is computed by the
central finite differences described in Section 4 for all the nodes where Hð/; unÞ ¼ 0. Likewise, using the values
of unn is then computed by central differencing for all the nodes where Hð/; unnÞ ¼ 0. The three partial differ-
ential equations above are discretized in a dimension by dimension framework using the upwind schemes and
the one-sided finite differences of Section 4, i.e. the discretizations in a semi-discrete form read:
d

ds
unn þ Hð/; unnÞðnþx D�x unn þ n�x Dþx unnÞ ¼ 0;

d

ds
un þ Hð/; unÞðnþx D�x un þ n�x Dþx unÞ ¼ Hð/; unÞunn;
and
d

ds
uþ Hð/; uÞðnþx D�x uþ n�x Dþx uÞ ¼ Hð/; uÞun:
These semi-discrete equations are then evolved in time using the same TVD RK-2 method of Section 6. Since
the equations are evolved in fictitious time, we can take the same time step restriction as in the reinitialization
procedure of Section 6.

Fig. 15 illustrates the constant, linear and quadratic extrapolation obtained with the algorithm described
above: Consider a computational domain X ¼ ð�p; pÞ � ð�p; pÞ separated into two regions: X� defined as
the interior of a disk with center at the origin and radius two, and Xþ ¼ X n X�. The function u to be extrap-
olated from X� to X+ is defined as u ¼ cosðxÞ sinðyÞ for x 2 X�. We have extrapolated u in the entire region in
this example for the sake of presentation but we emphasize that in practice the extrapolation is performed only
in a neighborhood of the interface. Tables 9–11 demonstrate the first order accuracy for the constant extrap-
olation, the second order accuracy for the linear extrapolation and the third order accuracy for the quadratic
extrapolation. We note that it is enough to discretize D�x unn and D�x un with the first order accurate finite dif-
ference of Section 4, and D�x u with the second order accurate finite difference in Section 4 to achieve third
order accuracy in u in the case of a quadratic extrapolation. The same accuracy would be achieved in the case
where the second order accurate finite differences were used for D�x unn, D�x un, and D�x un. However, using the
first order accurate finite difference schemes for D�x unn and D�x un yields more robust results since unn and un

may be noisy unless u is a very smooth function.
11. Conclusion

We have presented a level set method on non-graded adaptive Cartesian grids, i.e. grids for which the ratio
between adjacent cells is not constrained. We use quadtree and octree data structures to represent the grid and
a simple algorithm to generate a mesh with the finest resolution at the interface. We have presented (1) a
locally third order accurate reinitialization scheme that transforms an arbitrary level set function into a signed

Fig. 15. Contours of the solution after it has been extrapolated across the interface with a constant (left), linear (center) and quadratic
(right) extrapolations across an interface. The top row illustrates the extrapolation on the entire domain and the bottom row is a zoom
near the interface. The exact solution is given inside the circle centered at the origin and with radius 2 and is extrapolated outside in the
normal direction. We then plot the level curves of the solution.

Table 9
Convergence rate for the constant extrapolation

Finest resolution L1 error of / Rate L1 error of / Rate

322 5:11� 10�1 1:11� 10�1

642 2:55� 10�1 1.01 3:75� 10�2 1.56
1282 1:25� 10�1 1.02 1:06� 10�2 1.82
2562 6:20� 10�2 1.01 2:89� 10�3 1.87
5122 3:14� 10�2 .97 7:59� 10�4 1.92
10242 1:59� 10�2 .98 2:01� 10�4 1.91

Table 10
Convergence rate for the linear extrapolation

Finest resolution L1 error of / Rate L1 error of / Rate

322 2:02� 10�1 3:52� 10�2

642 7:21� 10�2 1.48 6:09� 10�3 2.53
1282 1:78� 10�2 2.00 8:79� 10�4 2.79
2562 5:27� 10�3 1.76 1:19� 10�4 2.88
5122 1:12� 10�3 2.22 1:54� 10�5 2.94
10242 2:83� 10�4 1.99 2:04� 10�6 2.91

Table 11
Convergence rate for the quadratic extrapolation

Finest resolution L1 error of / Rate L1 error of / Rate

322 1:62� 10�1 2:26� 10�2

642 2:31� 10�2 2.82 2:21� 10�3 3.36
1282 2:95� 10�3 2.96 1:65� 10�4 3.73
2562 3:81� 10�4 2.95 1:17� 10�5 3.81
5122 4:89� 10�5 2.96 7:82� 10�7 3.91
10242 6:19� 10�6 2.98 5:31� 10�8 3.88

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 319

320 C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321
distance function, (2) a second order accurate semi-Lagrangian methods to evolve the linear level set advection
equation under an externally generated velocity field, (3) a second order accurate upwind method to evolve the
non-linear level set equation under a normal velocity as well as to extrapolate scalar quantities across an inter-
face in the normal direction, and (4) a semi-implicit scheme to evolve the interface under mean curvature. This
method produces results with a negligible amount of mass loss. We have proposed numerical examples in two
and three spatial dimensions to demonstrate the accuracy of the method.

Acknowledgment

The research of F. Gibou was supported in part by the Alfred P. Sloan Foundation through a research fel-
lowship in Mathematics.

References

[1] T. Aslam, A partial differential equation approach to multidimensional extrapolation, J. Comput. Phys. 193 (2004) 349–355.
[2] J.B. Bell, P. Colella, H.M. Glaz, A second order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys

85 (1989) 257–283.
[3] D. Benson, Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Meth. Appl. Mech. Eng. 99 (1992) 235–394.
[4] D. Benson, Volume of fluid interface reconstruction methods for multimaterial problems, Appl. Mech. Rev. 52 (2002) 151–165.
[5] R. Caflisch, M. Gyure, B. Merriman, S. Osher, C. Ratsch, D. Vvedensky, J. Zinck, Island dynamics and the level set method for

epitaxial growth, Appl. Math. Lett. 12 (1999) 13.
[6] R. Caiden, R. Fedkiw, C. Anderson, A numerical method for two phase flow consisting of separate compressible and incompressible

regions, J. Comput. Phys. 166 (2001) 1–27.
[7] A. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 2 (1967) 12–26.
[8] R. Courant, E. Isaacson, M. Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Comm. Pure

Appl. Math. 5 (1952) 243–255.
[9] R. DeBar, Fundamentals of the KRAKEN code, Technical Report, Lawrence Livermore National Laboratory (UCID- 17366), 1974.

[10] Marc Droske, Bernhard Meyer, Martin Rumpf, Carlo Schaller, An adaptive level set method for medical image segmentation,
Lecture Notes Comput. Sci. 2082 (2001) 416–422.

[11] V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction. Technical Report, Los Alamos National Laboratory (LA-
UR-05-7571), 2006.

[12] K. Elder, M. Grant, N. Provatas, J. Kosterlitz, Sharp interface limits of phase-field models, SIAM J. Appl. Math. 64 (2001) 021604.
[13] D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys.

183 (2002) 83–116.
[14] D. Enright, S. Marschner, R. Fedkiw, Animation and rendering of complex water surfaces, ACM Trans. Graph. (SIGGRAPH Proc.)

21 (3) (2002) 736–744.
[15] R. Fedkiw, The ghost fluid method for discontinuities and interfaces, in: E.F. Toro (Ed.), Godunov Methods, Kluwer, New York,

2001, pp. 309–317.
[16] R. Fedkiw, Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys.

175 (2002) 200–224.
[17] R. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid

method), J. Comput. Phys. 152 (1999) 457–492.
[18] R. Fedkiw, J. Stam, H. Jensen, Visual simulation of smoke, in: Proc. of ACM SIGGRAPH 2001, 2001, pp. 15–22.
[19] F. Gibou, L. Chen, D. Nguyen, S. Banerjee, A level set based sharp interface method for incompressible flows with phase change, J.

Comput. Phys. (2006). Available online at: <http://www.sciencedirect.com/science/journal/00219991>.
[20] F. Gibou, R. Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with

applications to the Stefan problem, J. Comput. Phys. 202 (2005) 577–601.
[21] F. Gibou, R. Fedkiw, R. Caflisch, S. Osher, A level set approach for the numerical simulation of dendritic growth, J. Sci. Comput. 19

(2003) 183–199.
[22] F. Gibou, R. Fedkiw, L.-T. Cheng, M. Kang, A second-order-accurate symmetric discretization of the Poisson equation on irregular

domains, J. Comput. Phys. 176 (2002) 205–227.
[23] F. Gibou, C. Ratsch, R. Caflisch, Capture numbers in rate equations and scaling laws for epitaxial growth, Phys. Rev. B 67 (2003)

155403.
[24] F. Gibou, C. Ratsch, S. Chen, M. Gyure, R. Caflisch, Rate equations and capture numbers with implicit island correlations, Phys.

Rev. B 63 (2001) 115401.
[25] J. Glimm, J.W. Grove, X.L. Li, N. Zhao, Simple front tracking, Contemporary Math. 238 (1999) 133–149.
[26] S. Hieber, P. Koumoutsakos, A Lagrangian particle level set method, J. Comput. Phys. 210 (2005) 342–367.
[27] C. Hirt, B. Nichols, Volume of fluid (vof) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–225.
[28] D. Juric, G. Tryggvason, A front tracking method for dendritic solidification, J. Comput. Phys. 123 (1996) 127–148.

http://www.sciencedirect.com/science/journal/00219991

C. Min, F. Gibou / Journal of Computational Physics 225 (2007) 300–321 321
[29] D. Juric, G. Tryggvason, Computations of boiling flows, Int. J. Multiphase Flow. 24 (1998) 387–410.
[30] A. Karma, Phase-field formulation for quantitative modeling of alloy solidification, Phys. Rev. Lett. 87 (2001) 115701.
[31] A. Karma, W.-J. Rappel, Phase-field modeling method for computationally efficient modeling of solidification with arbitrary interface

kinetics, Phys. Rev. E 53 (1996).
[32] A. Karma, W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E 57 (1997)

4323–4349.
[33] J.S. Langer, in: G. Grinstein, G. Mazenko (Eds.), Directions in Condensed Matter Physics, World Scientific Singapore, 1986.
[34] X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 126 (1996) 202–212.
[35] X.D. Liu, R. Fedkiw, M. Kang, A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput.

Phys. 154 (2000) 151.
[36] F. Losasso, F. Gibou, R. Fedkiw, Simulating water and smoke with an octree data structure, ACM Trans. Graph. (SIGGRAPH

Proc.) (2004) 457–462.
[37] B. Milne, Adaptive Level Set Methods Interfaces, PhD thesis, University of California at Berkeley, June 1995.
[38] C. Min, F. Gibou, H. Ceniceros, A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-

graded grids, J. Comput. Phys. 218 (2006) 123–140.
[39] C.-H. Min, Local level set method in high dimension and codimension, J. Comput. Phys. 200 (2004) 368–382.
[40] D. Moore, The cost of balancing generalized quadtrees, in: Proceedings of the Third ACM Symposium on Solid Modeling and

Applications, 1995, pp. 305–312.
[41] B. Nestler, D. Danilov, P. Galenko, Crystal growth of pure substances: phase-field simulations in comparison with analytical and

experimental results, J. Comput. Phys. 207 (2005) 221–239.
[42] D. Nguyen, R. Fedkiw, M. Kang, A boundary condition capturing method for incompressible flame discontinuities, J. Comput. Phys.

172 (2001) 71–98.
[43] D. Nguyen, F. Gibou, R. Fedkiw, A fully conservative ghost fluid method and stiff detonation waves, in: 12th International

Detonation Symposium, San Diego, CA, 2002.
[44] W. Noh, P. Woodward, SLIC (simple line interface calculation), in: 5th International Conference on Numerical Methods in Fluid

Dynamics, 1976, pp. 330–340.
[45] E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225–246.
[46] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, NY, 2002.
[47] S. Osher, N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer-Verlag, New York, NY, 2003.
[48] S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J.

Comput. Phys. 79 (1988) 12–49.
[49] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries, J. Comput. Phys. 190

(2003) 572–600.
[50] C. Ratsch, M. Gyure, F. Gibou, M. Petersen, M. Kang, J. Garcia, D. Vvedensky, Level-set method for island dynamics in epitaxial

growth, Phys. Rev. B 65 (2002) 195403.
[51] G. Russo, P. Smereka, A remark on computing distance functions, J. Comput. Phys. 163 (2000) 51–67.
[52] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS, Addison-Wesley, New York,

1990.
[53] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, New York, 1989.
[54] A. Schmidt, Computation of three dimensional dendrites with finite elements, J. Comput. Phys. 125 (1996) 293–312.
[55] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999.
[56] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys. 77 (1988)

439–471.
[57] P. Smereka, Semi-implicit level set methods for curvature and surface diffusion motion, J. Sci. Comput. 19 (2003) 439–456.
[58] J. Strain, Tree methods for moving interfaces, J. Comput. Phys. 151 (1999) 616–648.
[59] J. Strain, A fast modular semi-Lagrangian method for moving interfaces, J. Comput. Phys. 161 (2000) 512–536.
[60] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible two-phase flows, Comput. Fluids 27

(1998) 663–680.
[61] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys.

114 (1994) 146–159.
[62] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front-tracking method for

the computations of multiphase flow, J. Comput. Phys. 169 (2001) 708–759.
[63] A. Weiser, Local-Mesh, Local-Order, Adaptive Finite Element Methods with a Posteriori Error Estimators for Elliptic Partial

Differential Equations, PhD thesis, Yale University, June 1981.
[64] A. Wheeler, Handbook of Crystal Growth, in: D.T. Hurle (Ed.), vol. 1B, North-Holland, Amsterdam, 1993.
[65] D. Xiu, G. Karniadakis, A semi-Lagrangian high-order method for Navier–Stokes equations, J. Comput. Phys 172 (2001) 658–684.
[66] D. Youngs, An interface tracking method for a 3D Eulerian hydrodynamics code, Technical Report, AWRE (44/92/35), 1984.

	A second order accurate level set method on non-graded adaptive cartesian grids
	Introduction
	The level set method
	Spatial discretization and refinement criterion
	Finite difference discretizations
	Interpolation procedures
	Reinitialization scheme
	Adaptive time stepping
	Third order accuracy

	Motion under an externally generated velocity field
	Second order accurate semi-Lagrangian method
	Test: rotation in 2D
	Test: vortex in 2D
	Test: rotation in 3D
	Enright ' s test in 3D

	Motion in the normal direction and curvature driven flow
	Motion in the normal direction
	Adding motion by mean curvature

	Adaptive grid generation
	High order extrapolation in the normal direction
	Conclusion
	Acknowledgment
	References

